Molecular and Functional Analysis of UDP-N-Acetylglucosamine Pyrophosphorylases from the Migratory Locust, Locusta migratoria
نویسندگان
چکیده
UDP-N-acetylglucosamine pyrophosphorylases (UAP) function in the formation of extracellular matrix by producing N-acetylglucosamine (GlcNAc) residues needed for chitin biosynthesis and protein glycosylation. Herein, we report two UAP cDNA's derived from two different genes (LmUAP1 and LmUAP2) in the migratory locust Locusta migratoria. Both the cDNA and their deduced amino acid sequences showed about 70% identities between the two genes. Phylogenetic analysis suggests that LmUAP1 and LmUAP2 derive from a relatively recent gene duplication event. Both LmUAP1 and LmUAP2 were widely expressed in all the major tissues besides chitin-containing tissues. However, the two genes exhibited different developmental expression patterns. High expression of LmUAP1 was detected during early embryogenesis, then decreased greatly, and slowly increased before egg hatch. During nymphal development, the highest expression of LmUAP1 appeared just after molting but declined in each inter-molting period and then increased before molting to the next stage, whereas LmUAP2 was more consistently expressed throughout all these stages. When the early second- and fifth-instar nymphs (1-day-old) were injected with LmUAP1 double-stranded RNA (dsRNA), 100% mortality was observed 2 days after the injection. When the middle second- and fifth-instar nymphs (3- to 4-day-old) were injected with LmUAP1 dsRNA, 100% mortality was observed during their next molting process. In contrast, when the insects at the same stages were injected with LmUAP2 dsRNA, these insects were able to develop normally and molt to the next stage successfully. It is presumed that the lethality caused by RNAi of LmUAP1 is due to reduced chitin biosynthesis of the integument and midgut, whereas LmUAP2 is not essential for locust development at least in nymph stage. This study is expected to help better understand different functions of UAP1 and UAP2 in the locust and other insect species.
منابع مشابه
Evidence for Widespread Genomic Methylation in the Migratory Locust, Locusta migratoria (Orthoptera: Acrididae)
The importance of DNA methylation in mammalian and plant systems is well established. In recent years there has been renewed interest in DNA methylation in insects. Accumulating evidence, both from mammals and insects, points towards an emerging role for DNA methylation in the regulation of phenotypic plasticity. The migratory locust (Locusta migratoria) is a model organism for the study of phe...
متن کاملLarge-Scale Transcriptome Analysis of Retroelements in the Migratory Locust, Locusta migratoria
BACKGROUND Retroelements can successfully colonize eukaryotic genome through RNA-mediated transposition, and are considered to be some of the major mediators of genome size. The migratory locust Locusta migratoria is an insect with a large genome size, and its genome is probably subject to the proliferation of retroelements. An analysis of deep-sequencing transcriptome data will elucidate the s...
متن کاملIdentification of Representative Genes of the Central Nervous System of the Locust, locusta migratoria manilensis by Deep Sequencing
The shortage of available genomic and transcriptomic data hampers the molecular study on the migratory locust, Locusta migratoria manilensis (L.) (Orthoptera: Acrididae) central nervous system (CNS). In this study, locust CNS RNA was sequenced by deep sequencing. 41,179 unigenes were obtained with an average length of 570 bp, and 5,519 unigenes were longer than 1,000 bp. Compared with an EST da...
متن کاملTwo dopamine receptors play different roles in phase change of the migratory locust
The migratory locust, Locusta migratoria, shows remarkable phenotypic plasticity at behavioral, physiological, and morphological levels in response to fluctuation in population density. Our previous studies demonstrated that dopamine (DA) and the genes in the dopamine metabolic pathway mediate phase change in Locusta. However, the functions of different dopamine receptors in modulating locust p...
متن کاملCharacterization and Functional Analysis of Four Glutathione S-Transferases from the Migratory Locust, Locusta migratoria
Glutathione S-transferases (GSTs) play an important role in detoxification of xenobiotics in both prokaryotic and eukaryotic cells. In this study, four GSTs (LmGSTd1, LmGSTs5, LmGSTt1, and LmGSTu1) representing different classes were identified from the migratory locust, Locusta migratoria. These four proteins were heterologously expressed in Escherichia coli as soluble fusion proteins, purifie...
متن کامل